Modeling quasielastic neutrino-nucleus scattering in MiniBooNe and T2K From very low energies to the quasielastic peak

N. Jachowicz, V. Pandey, T. Van Cuyck

Ghent University Department of Physics and Astronomy

natalie.jachowicz@UGent.be

Neutrino-hadron scattering

Motivation I: Neutrino-oscillation experiments

- v_{μ} are produced, part of them is detected in the near detector
- Neutrinos propagate from near to far detector, neutrino oscillations occur underway
- Neutrinos are detected in the far detector
- Count different neutrino flavors at near and far detector
- Extract information about mass differences and mixing angles from the differences between near and far detector

Motivation II : Neutrinos in a corecollapse supernova

- weak interactions are important
- neutrinos are produced in the neutronization processes characterizing the gravitational collapse
- neutrinos are responsible for the cooling of the proto-neutron star
- neutrinonucleosynthesis
- energy deposition by neutrinos might reheat the stalled shock wave and cause a delayed explosion
- terrestrial detection of supernova neutrinos

H.-T. Janka astro-ph/0008432

Motivation III ... : 236 MeV neutrinos

- Protons on Carbon generate Kaons
- Kaons-at-rest- decay ... primarily in v_{μ}
- with an energy of 236 MeV

Joshua Spitz PRD89 073007

What is 'low energy'?

Neutrino-nucleus interactions

$$\widehat{H}_{W} = \frac{G}{\sqrt{2}} \int d\vec{x} \, \hat{j}_{\mu,lepton}(\vec{x}) \, \hat{j}^{\mu,hadron}(\vec{x})$$

Hadron current

$$J^{\mu} = F_1(Q^2)\gamma^{\mu} + i\frac{\kappa}{2M_N}F_2(Q^2)\sigma^{\mu\nu}q_{\nu} + G_A(Q^2)\gamma^{\mu}\gamma_5 + \frac{1}{2M_N}G_P(Q^2)q^{\mu}\gamma_5$$

Lepton tensor

$$l_{\alpha\beta} \equiv \sum_{s,s'} [\overline{u}_l \gamma_\alpha (1-\gamma_5) u_l]^{\dagger} [\overline{u}_\nu \gamma_\beta (1-\gamma_5) u_\nu]$$

$$\begin{split} \vec{J}_{V}^{\alpha}\left(\vec{x}\right) &= \quad \vec{J}_{convection}^{\alpha}\left(\vec{x}\right) + \vec{J}_{magnetization}^{\alpha}\left(\vec{x}\right) \\ \text{with} &\qquad \vec{J}_{c}^{\alpha}\left(\vec{x}\right) = \frac{1}{2Mi} \sum_{i=1}^{A} G_{E}^{i,\alpha} \left[\delta\left(\vec{x} - \vec{x}_{i}\right) \vec{\nabla}_{i} - \vec{\nabla}_{i} \, \delta\left(\vec{x} - \vec{x}_{i}\right)\right], \\ \vec{J}_{m}^{\alpha}\left(\vec{x}\right) &= \frac{1}{2M} \sum_{i=1}^{A} G_{M}^{i,\alpha} \vec{\nabla} \times \vec{\sigma}_{i} \, \delta\left(\vec{x} - \vec{x}_{i}\right), \\ \vec{J}_{A}^{\alpha}\left(\vec{x}\right) &= \sum_{i=1}^{A} G_{A}^{i,\alpha} \vec{\sigma}_{i} \, \delta\left(\vec{x} - \vec{x}_{i}\right), \\ J_{V}^{0,\alpha}\left(\vec{x}\right) &= \rho_{V}^{\alpha}\left(\vec{x}\right) = \sum_{i=1}^{A} G_{E}^{i,\alpha} \, \delta\left(\vec{x} - \vec{x}_{i}\right), \\ J_{A}^{0,\alpha}\left(\vec{x}\right) &= \rho_{A}^{\alpha}\left(\vec{x}\right) = \frac{1}{2Mi} \sum_{i=1}^{A} G_{A}^{i,\alpha} \, \vec{\sigma}_{i} \cdot \left[\delta\left(\vec{x} - \vec{x}_{i}\right) \vec{\nabla}_{i} - \vec{\nabla}_{i} \, \delta\left(\vec{x} - \vec{x}_{i}\right)\right] \\ J_{P}^{0,\alpha}\left(\vec{x}\right) &= \rho_{P}^{\alpha}\left(\vec{x}\right) = \frac{m_{\mu}}{2M} \sum_{i=1}^{A} G_{P}^{i,\alpha} \, \vec{\nabla} \cdot \vec{\sigma}_{i} \, \delta\left(\vec{x} - \vec{x}_{i}\right) \end{split}$$

for NC reactions

$$G_E^{V,o} = \left(\frac{1}{2} - \sin^2 \theta_W\right) \tau_3 - \sin^2 \theta_W,$$

$$G_M^{V,o} = \left(\frac{1}{2} - \sin^2 \theta_W\right) (\mu_p - \mu_n) \tau_3 - \sin^2 \theta_W (\mu_p + \mu_n)$$

$$G^{A,0} = g_a \frac{\tau_3}{2} = -\frac{1.262}{2} \tau_3$$

for CC reactions

$$G_E^{V,\pm} = \tau_{\pm}$$

 $G_M^{V,\pm} = (\mu_p - \mu_n) \tau_{\pm}$
 $G^{A,\pm} = g_a \tau_{\pm} = -1.262 \tau_{\pm}$

 $G = (1 + Q^2/M^2)^{-2} Q^2$ dependence : dipole parametrization

Cross section

$$\frac{d^2\sigma}{d\Omega\,d\omega} = (2\pi)^4 \, k_f \varepsilon_f \, \sum_{s_f, s_i} \, \frac{1}{2J_i + 1} \, \sum_{M_f, M_i} \, \left| \left\langle f \left| \hat{H}_W \right| i \right\rangle \right|^2$$

$$\left(\frac{d^2\sigma_{i\to f}}{d\Omega d\omega}\right)_{\frac{\nu}{\nu}} = \frac{G^2\varepsilon_f^2}{\pi} \frac{2\cos^2\left(\frac{\theta}{2}\right)}{2J_i+1} \left[\sum_{J=0}^{\infty}\sigma_{CL}^J + \sum_{J=1}^{\infty}\sigma_T^J\right]$$

$$\sigma_{CL}^{J} = \left| \left\langle J_{f} \left\| \widehat{\mathcal{M}}_{J}(\kappa) + \frac{\omega}{|\vec{q}|} \widehat{\mathcal{L}}_{J}(\kappa) \right\| J_{i} \right\rangle \right|^{2}$$

$$\sigma_{T}^{J} = \left(-\frac{q_{\mu}^{2}}{2 |\vec{q}|^{2}} + \tan^{2} \left(\frac{\theta}{2} \right) \right) \left[\left| \left\langle J_{f} \right\| \widehat{\mathcal{J}}_{J}^{mag}(\kappa) \right\| J_{i} \right\rangle \right|^{2} + \left| \left\langle J_{f} \right\| \widehat{\mathcal{J}}_{J}^{el}(\kappa) \right\| J_{i} \right\rangle \right|^{2} \right]$$

$$\mp \tan \left(\frac{\theta}{2} \right) \sqrt{-\frac{q_{\mu}^{2}}{|\vec{q}|^{2}} + \tan^{2} \left(\frac{\theta}{2} \right)} \left[2\Re \left(\left\langle J_{f} \right\| \widehat{\mathcal{J}}_{J}^{mag}(\kappa) \right\| J_{i} \right\rangle \left\langle J_{f} \left\| \widehat{\mathcal{J}}_{J}^{el}(\kappa) \right\| J_{i} \right\rangle^{*} \right) \right]$$

Bound state wave functions

Hartree-Fock singleparticle wave functions (Skyrme)

- Pauli blocking
- binding

Extra ingredients of the model

•I. Relativistic corrections at higher energies (J. Jeschonnek and T. Donnelly, PRC57, 2438 (1998)):

 $\lambda \rightarrow \lambda(\lambda + 1)$ $\lambda = \omega/2M_N$

•III.Coulomb correction for the outgoing lepton in charged-current interactions :

✓ Low energies : Fermi function

$$F(Z',E) = \frac{2\pi\eta}{1 - e^{-2\pi\eta}} \quad \eta \sim \mp Z'\alpha$$

✓ High energies : modified effective momentum approximation (J. Engel, PRC57, 2004 (1998))

$$q_{eff} = q + 1.5 \left(\frac{Z'\alpha\hbar c}{R}\right) \Psi_l^{eff} = \zeta(Z', E, q) \Psi_l \qquad \zeta(Z', E, q) = \sqrt{\frac{q_{eff}E_{eff}}{qE}}$$

• IV. Final state interactions :

-taken into account through the calculations of the wave function of the outgoing nucleon in the (real) nuclear potential generated using the Skyrme force

-influence of the spreading width of the particle states is implemented through a folding procedure

Validating the formalism : Comparison with electron scattering data

 $q \sim 160 [MeV/c], Q^2 \sim 0.026 [(GeV/c)^2]$

 $d^2\sigma/d\omega d\Omega({
m nb/MeV}\,{
m sr})$

 $q \sim 95 \text{ [MeV/c]}, Q^2 \sim 0.009 \text{ [(GeV/c)}^2\text{]}$

q ~ 207 [MeV/c], Q² ~ 0.042 [(GeV/c)²]

¹²C(*e*, *e*') ... continued

ω (Ι

 ω (MeV)

¹²*C*(*e*, *e*') ... continued

¹⁶O(e, e')

Good overall agreement with e-scattering data

P. Barreau et al., Nucl. Phys. A402, 515 (1983), J. S. O'Connell et al., Phys. Rev. C35, 1063 (1987), R. M. Sealock et al., Phys. Rev. Lett.62, 1350 (1989)., D. S. Bagdasaryan et al., YERPHI-1077-40-88 (1988), D. B. Day et al., Phys. Rev. C 48, 1849 (1993)., D. Zeller, DESY-F23-73-2 (1973).

Low energy neutrino scattering results :

 $d\sigma/d\Omega$ (10⁻⁴² cm² MeV⁻¹)

ω (MeV)

Multipole contributions :

Neutrinos versus antineutrinos

Contribution of different single-particle channels in ¹²C

Supernova neutrinos

$$n_{SN[\langle \varepsilon \rangle, \alpha]}(\varepsilon) = \left(\frac{\varepsilon}{\langle \varepsilon \rangle}\right)^{\alpha} e^{-(\alpha+1)\frac{\varepsilon}{\langle \varepsilon \rangle}}$$

Folded cross sections supernova neutrino spectra :

Cumulative folded cross sections:

Strangeness in the nucleon

Axial form factor :

$$G_A(Q^2) = -rac{(au_3 g_A - g_A^s)}{2} G(Q^2), \qquad g_A = 1.262$$

 $G(Q^2) = (1 + Q^2/M^2)^{-2}, \qquad M = 1.032$

Weak vector form factors :

$$F_1^s = rac{1}{6} rac{-r_s^2 Q^2}{(1+Q^2/M_1^2)^2}, \qquad M_1 = 1.3$$

$$F_2^s = \frac{\mu_s}{(1+Q^2/M_2^2)^2}, \quad M_2 = 1.26$$

Traditionally :

•strangeness contribution to the *weak vector formfactors* : Parity Violating Electron Scattering (Sample, Happex, G0, ...)

•strangeness contribution to the *axial current* : neutrino scattering -vector current contributions are suppressed

-no radiative corrections

N.J., P. Vancraeyveld, P. Lava, J. Ryckebusch, PRC76, 055501 (2007).

Neutrino cross sections including strangeness

- Generally : net strangeness effect vanishes for isoscalar targets
- close to particle knockout threshold the influence becomes larger due to binding energy differences between protons and neutrons
- differential cross sections differ, energy of reaction products can be very different

proton/neutron cross sections

•differences up to 20%

•opposite effect for protons and neutrons

Higher incoming energies

Multipole distribution

Comparison with neutrino data

More detailed cross section contributions

Missing strength mainly attributed to transverse responses

Forward scattering

Collective excitations at low energies generate some extra strength

Electronneutrino vs muonneutrino Cross sections

Outlook :

• short-range correlations in QE region

• MEC

Summary

- Inelastic neutrino cross sections at (very) low energies :
 - ✓ Heavily depend on incoming energy
 - ✓ Are dominated by axial, isovector, $J^{\pi}=1^{-}$ contributions
 - ✓ Are sensitive to axial strangeness contributions
- Supernova neutrino cross sections are dominated by interactions with neutrinos from the tail of the spectrum
- Strangeness content of the nucleon affects neutral current cross sections and cross section ratios
- At intermediate energies, CRPA calculations provide extra strength for forward scattering arising from low-energy excitations
- This might affect CCQE neutrino cross sections as measured by MiniBooNe and T2K

• Refs. : V. Pandey, N. Jachowicz et al : PRC89,024601, PRC92,024606.